[1]BIRD A. Perceptions of epigenetics[J]. Nature, 2007, 447(7143): 396-398. [2]BONASIO R, TU S, REINBERG D. Molecular signals of epigenetic states[J]. Science, 2010, 330(6004): 612-616. [3]BERNSTEIN B E, MEISSNER A, LANDER E S. The mammalian epigenome[J]. Cell, 2007, 128(4): 669-681. [4]SURANI M A, HAYASHI K, HAJKOVA P. Genetic and epigenetic regulators of pluripotency[J]. Cell, 2007, 128: 747-762. [5]BESTOR T, LAUDANO A, MATTALIANO R, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases[J]. J Mol Biol, 1988, 203(4): 971-983. [6]LEI H, OH S P, OKANO M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells[J]. Development, 1996, 122(10): 3195-3205. [7]GOLL M G, KIRPEKAN F, MAGGERT K A, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J]. Science, 2006, 311(5759): 395-398. [8]OKANO M, XIE S, LI E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells[J]. Nucleic Acids Res, 1998, 26(11): 2536-2540. [9]KANEDA M, OKANO M, HATA K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting[J]. Nature, 2004, 429(6994): 900-903. [10]OKANO M, BELL D W, HABER D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3): 247-257. [11]UEDA Y, OKANO M, WILLIAMS C, et al. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome[J]. Development, 2006, 133(6): 1183-1192. [12]BOURC'HIS D, BESTOR T H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L[J]. Nature, 2004, 431(7004): 96-99. [13]BOURC'HIS D, XU G L, LIN C S, et al. Dnmt3L and the establishment of maternal genomic imprints[J]. Science, 2001, 294(5551): 2536-2539. [14]HATA K, OKANO M, LEI H, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice[J]. Development, 2002, 129(8): 1983-1993. [15]WEBSTER K E, O'BRYAN M K, FLETCHER S, et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis[J]. Proc Natl Acad Sci USA, 2005, 102(11): 4068-4073. [16]BOSTICK M, KIM J K, ESTEVE P O, et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells[J]. Science, 2007, 317(5845): 1760-1764. [17]FUJIMORI A, MATSUDA Y, TAKEMOTO Y, et al. Cloning and mapping of Np95 gene which encodes a novel nuclear protein associated with cell proliferation[J]. Mamm Genome, 1998, 9(12): 1032-1035. [18]SHARIF J, MUTO M, TAKEBAYASHI S, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA[J]. Nature, 2007, 450(7171): 908-912. [19]DAWALAT M M, GANZ K, PIWELL B E, et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development[J]. Cell Stem Cell, 2011, 9(2): 166-175. [20]ITO S, D'ALESSIO A C, TARANOVA O V, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, 2010, 466(7310): 1129-1133. [21]SZWAGIERCZAK A, BULTMANN S, SCHMIDT C S, et al. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA[J]. Nucleic Acids Res, 2010, 38(19): e181. [22]TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009,324(5929): 930-935. [23]FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. [24]MORAN-CRUSIO K, REAVIE L, SHIH A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation[J]. Cancer Cell, 2011, 20(1): 11-24. [25]QUIVORON C, COURONNE L, DELLA VALLE V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis[J]. Cancer Cell, 2011, 20(1): 25-38. [26]GU T P, GUO F, YANG H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]. Nature, 2011, 477(7366): 606-610. [27]WOSSIDLO M, NAKAMURA T, LEPIKHOV K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming[J]. Nat Commun, 2011, 2: 241. [28]MURAMATSU M, SANKARANAND V S, ANANT S, et al. Specific expression of activationinduced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells[J]. J Biol Chem, 1999, 274(26): 18470-18476. [29]MURAMATSU M, KINOSHITA K, FAGARASANS, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme[J]. Cell, 2000, 102(5): 553-563. [30]GUO J U, SU Y, ZHONG C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3): 423-434. [31]HIRANO K, YOUNG S G, FARESE R V, et al. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48[J]. J Biol Chem, 1996, 271(17): 9887-9890. [32]HAJKOVA P, GEFFRIES S J, LEE C, et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway[J]. Science, 2010, 329(5987): 78-82. [33]HAJKOVA P, ANCELIN K, WALDMANN T, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line[J]. Nature, 2008, 452(7189): 877-881. [34]MAYER W, NIVELEAU A, WALTE R, et al. Demethylation of the zygotic paternal genome[J]. Nature, 2000, 403(6769): 501-502. [35]NAKAMURA T, ARAI Y, UMEHARA H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis[J]. Nat Cell Biol, 2007, 9: 64-71. [36]WOSSIDLO M, ARAND J, SEBASTIANO V, et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes[J]. EMBO J, 2010, 29(11): 1877-1888. [37]LAW J A, JACOBSEN S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3): 204-220. [38]ZIEGLER-BIRLING C, HELMRICH A, TORA L, et al. Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage[J]. Int J Dev Biol, 2009, 53(7): 1003-1011. [39]ODA M, GLASS J L, THOMPSON R F, et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers[J]. Nucleic Acids Res, 2009, 37(12): 3829-3839. [40]SMALLWOOD S A, TOMIZAWA S, KRUEGER F, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos[J]. Nat Genet, 2011, 43(8): 811-814. [41]ZHU J K. Active DNA demethylation mediated by DNA glycosylases[J]. Annu Rev Genet, 2009, 43: 143-166. [42]BRANCO M R, ODA M, REIK W. Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis[J]. Genes Dev, 2008, 22(12): 1567-1571. [43]GEHRING M, BUBB K L, HENIKOFF S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting[J]. Science, 2009, 324(5933): 1447-1451. [44]HIRASAWA R, CHIBA H, KANEDA M, et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development[J]. Genes Dev, 2008, 22(12): 1607-1616. [45]BORGEL J, GUIBERT S, LI Y, et al. Targets and dynamics of promoter DNA methylation during early mouse development[J]. Nat Genet, 2010, 42(12): 1093-1100. [46]GAUDET F, RIDEOUT W M, 3RD MEISSNER A, et al. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing[J]. Mol Cell Biol, 2004, 24(4): 1640-1648. [47]TOMIZAWA S, KOBAYASHI H, WATANABE T, et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes[J]. Development, 2011, 138(5): 811-820. |