[1] BOYCE W M, SANDROCK C, KREUDER-JOHNSON C, et al. Avian influenza viruses in wild birds:a moving target[J]. Comp Immunol Microbiol Infect Dis, 2009, 32(4):275-286.
[2] ALEXANDER D J. A review of avian influenza in different bird species[J]. Vet Microbiol, 2000, 74(1-2):3-13.
[3] ALEXANDER D J, ALLAN W H, PARSONS D, et al. The pathogenicity of four avian influenza viruses for fowls, turkeys and ducks[J]. Res Vet Sci, 1978, 24(2):242-247.
[4] CLARK L, HALL J. Avian influenza in wild birds:status as reservoirs, and risks to humans and agriculture[J]. Ornithol Monogr, 2006, 60:3-29.
[5] CHEN R B, HOLMES E C. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds[J]. Virology, 2009, 383(1):156-161.
[6] CHEN R B, HOLMES E C. Avian influenza virus exhibits rapid evolutionary dynamics[J]. Mol Biol Evol, 2006, 23(12):2336-2341.
[7] BANKS J, SPEIDEL E S, MOORE E, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy[J]. Arch Virol, 2001, 146(5):963-973.
[8] ZHANG L S, ZHANG Z G, WENG Z P. Rapid reassortment of internal genes in avian influenza A(H7N9) virus[J]. Clin Infect Dis, 2013, 57(7):1059-1061.
[9] GUO X, LIAO M, XIN C. Sequence of HA gene of avian influenza A/Chicken/Guangdong/SS/1994(H9N2) virus[J]. Avian Dis, 2003, 47(S3):1118-1121.
[10] HUANG Y Y, HU B X, WEN X T, et al. Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China[J]. Virus Res, 2010, 151(1):26-32.
[11] LIU H Q, LIU X F, CHENG J, et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001[J]. Avian Dis, 2003, 47(1):116-127.
[12] SUN Y P, PU J, JIANG Z L, et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008[J]. Vet Microbiol, 2010, 146(3-4):215-225.
[13] PU J, WANG S G, YIN Y B, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus[J]. Proc Natl Acad Sci U S A, 2015, 112(2):548-553.
[14] 葛菲菲,刘健,鞠厚斌,等.2007-2008年上海市H9N2亚型禽流感病毒的遗传演化[J].中国人兽共患病学报,2011,27(8):696-699.
GE F F, LIU J, JU H B, et al. Phylogenetic analysis of H9N2 subtype avian influenza virus isolates in Shanghai area from 2007 to 2008[J]. Chinese Journal of Zoonoses, 2011, 27(8):696-699. (in Chinese)
[15] WANG J, WU Y B, MA C L, et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus[J]. Proc Natl Acad Sci U S A, 2013, 110(4):1315-1320.
[16] YEN H L, MCKIMM-BRESCHKIN J L, CHOY K T, et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population[J]. mBio, 2013, 4(4):e00396-13.
[17] SUBBARAO E K, LONDON W, MURPHY B R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range[J]. J Virol, 1993, 67(4):1761-1764.
[18] CONENELLO G M, TISONCIK J R, ROSENZWEIG E, et al. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo[J]. J Virol, 2011, 85(2):652-662.
[19] SEO S H, HOFFMANN E, WEBSTER R G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses[J]. Nat Med, 2002, 8(9):950-954.
[20] JAGGER B W, MEMOLI M J, SHENG Z M, et al. The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase[J]. mBio, 2010, 1(1):e00067-10.
[21] SUAREZ D L, SCHULTZ-CHERRY S. Immunology of avian influenza virus:a review[J]. Dev Comp Immunol, 2000, 24(2-3):269-283.
[22] LEBARBENCHON C, STALLKNECHT D E. Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin[J]. Virol J, 2011, 8:328.
[23] BEIGEL J, BRAY M. Current and future antiviral therapy of severe seasonal and avian influenza[J]. Antiviral Res, 2008, 78(1):91-102.
[24] DEYDE V M, NGUYEN T, BRIGHT R A, et al. Detection of molecular markers of antiviral resistance in influenza A (H5N1) viruses using a pyrosequencing method[J]. Antimicrob Agents Chemother, 2009, 53(3):1039-1047.
[25] MCKIMM-BRESCHKIN J L, SAHASRABUDHE A, BLICK T J, et al. Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors[J]. J Virol, 1998, 72(3):2456-2462.
[26] KISO M, OZAWA M, LE M T Q, et al. Effect of an asparagine-to-serine mutation at position 294 in neuraminidase on the pathogenicity of highly pathogenic H5N1 influenza A virus[J]. J Virol, 2011, 85(10):4667-4672.
[27] HATTA M, GAO P, HALFMANN P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses[J]. Science, 2001, 293(5536):1840-1842.
[28] FORNEK J L, GILLIM-ROSS L, SANTOS C, et al. A single-amino-acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T-cell activation in mice[J]. J Virol, 2009, 83(21):11102-11115.
[29] LI Z J, CHEN H L, JIAO P R, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model[J]. J Virol, 2005, 79(18):12058-12064.
[30] CONENELLO G M, ZAMARIN D, PERRONE L A, et al. A single mutation in the PB1-F2 of H5N1(HK/97) and 1918 influenza A viruses contributes to increased virulence[J]. PLoS Pathog, 2007, 3(10):1414-1421. |