[1] RÖMLING U,GALPERIN M Y,GOMELSKY M.Cyclic di-GMP:The first 25 years of a universal bacterial second messenger[J].Microbiol Mol Biol Rev,2013,77(1):1-52.
[2] LEONI L,PAWAR S V,RAMPIONI G.Genetic tools to study c-di-GMP-dependent signaling in Pseudomonas aeruginosa[M]//SAUER K.c-di-GMP Signaling:Methods and Protocols.New York,NY:Humana Press,2017:471-480.
[3] BARAQUET C,HARWOOD C S.Use of nonradiochemical DNAse footprinting to analyze c-di-GMP modulation of DNA-binding proteins[M]//SAUER K.c-di-GMP Signaling:Methods and Protocols.New York,NY:Humana Press,2017:303-315.
[4] AHMAD I,CIMDINS A,BESKE T,et al.Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium[J].BMC Microbiol,2017,17:27.
[5] SLOUP R E,KONAL A E,SEVERIN G B,et al.Cyclic di-GMP and VpsR induce the expression of type Ⅱ secretion in Vibrio cholerae[J].J Bacteriol,2017,199(19):e00106-17.
[6] YIN Q,TIAN Y,KABALEESWARAN V,et al.Cyclic di-GMP sensing via the innate immune signaling protein STING[J].Mol Cell,2012,46(6):735-745.
[7] ALYAQOUB F S,ALDHAMEN Y A,KOESTLER B J,et al.In vivo synthesis of Cyclic-di-GMP using a recombinant adenovirus preferentially improves adaptive immune responses against extracellular antigens[J].J Immunol,2016,196(4):1741-1752.
[8] TAO J L,ZHOU X,JIANG Z F.cGAS-cGAMP-STING:The three musketeers of cytosolic DNA sensing and signaling[J].IUBMB Life,2016,68(11):858-870.
[9] WU J X,SUN L J,CHEN X,et al.Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J].Science,2013,339(6121):826-830.
[10] SHCHOKOLOVA A S,RYMKO A N,KVACH S V,et al.Enzymatic synthesis of 2'-ara and 2'-deoxy analogues of c-di-GMP[J].Nucleosides,Nucleotides Nucleic Acids,2015,34(6):416-423.
[11] KOROVASHKINA A S,RYMKO A N,KVACH S V,et al.Enzymatic synthesis of c-di-GMP using inclusion bodies of Thermotoga maritima full-length diguanylate cyclase[J].J Biotechnol,2013,164(2):276-280.
[12] SPEHR V,WARRASS R,HÖCHERL K,et al.Large-scale production of the immunomodulator c-di-GMP from GMP and ATP by an enzymatic cascade[J].Appl Biochem Biotechnol,2011,165(3-4):761-775.
[13] RAO F,PASUNOOTI S,NG Y,et al.Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase[J].Anal Biochem,2009,389(2):138-142.
[14] DAVIES B W,BOGARD R W,YOUNG T S,et al.Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence[J].Cell,2012,149(2):358-370.
[15] SPANGLER C,BÖHM A,JENAL U,et al.A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate[J].J Microbiol Methods,2010,81(3):226-231.
[16] IRIE Y,PARSEK M R.LC/MS/MS-based quantitative assay for the secondary messenger molecule,c-di-GMP[M]//FILLOUX A,RAMOS J L.Pseudomonas Methods and Protocols.New York,NY:Humana Press,2014:271-279.
[17] PAIJO J,KAEVER V,KALINKE U.cGAMP quantification in virus-infected human monocyte-derived cells by HPLC-coupled tandem mass spectrometry[M]//MOSSMAN K.Innate Antiviral Immunity:Methods and Protocols.New York,NY:Humana Press,2017:153-166.
[18] BAIRD N J,INGLESE J,FERRÉ-D'AMARÉ A R.Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes[J].Nat Commun,2015,6:8898.
[19] PAIGE J S,WU K Y,JAFFREY S R.RNA mimics of green fluorescent protein[J].Science,2011,333(6042):642-646.
[20] KELLENBERGER C A,WILSON S C,SALES-LEE J,et al.RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP[J].J Am Chem Soc,2013,135(13):4906-4909.
[21] SUDARSAN N,LEE E R,WEINBERG Z,et al.Riboswitches in eubacteria sense the second messenger cyclic Di-GMP[J].Science,2008,321(5887):411-413.
[22] SMITH K D,LIPCHOCK S V,AMES T D,et al.Structural basis of ligand binding by a c-di-GMP riboswitch[J].Nat Struct Mol Biol,2009,16(12):1218-1223.
[23] STRACK R L,DISNEY M D,JAFFREY S R.A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA[J].Nat Methods,2013,10(12):1219-1224.
[24] TRACHMAN Ⅲ R J,DRAPER D E.Comparison of interactions of diamine and Mg2+ with RNA tertiary structures:Similar versus differential effects on the stabilities of diverse RNA folds[J].Biochemistry,2013,52(34):5911-5919.
[25] LEIPPLY D,DRAPER D E.Dependence of RNA tertiary structural stability on Mg2+ concentration:Interpretation of the Hill equation and coefficient[J].Biochemistry,2010,49(9):1843-1853.
[26] TAN Z J,CHEN S J.RNA helix stability in mixed Na+/Mg2+ solution[J].Biophys J,2007,92(10):3615-3632.
[27] KLEIN D J,MOORE P B,STEITZ T A.The contribution of metal ions to the structural stability of the large ribosomal subunit[J].RNA,2004,10(9):1366-1379.
[28] LAUNER-FELTY K D,STROBEL S A.Enzymatic synthesis of cyclic dinucleotide analogs by a promiscuous cyclic-AMP-GMP synthetase and analysis of cyclic dinucleotide responsive riboswitches[J].Nucleic Acids Res,2018,46(6):2765-2776.
[29] KELLENBERGER C A,HAMMOND M C.In vitro analysis of riboswitch-spinach aptamer fusions as metabolite-sensing fluorescent biosensors[J].Methods Enzymol,2015,550:147-172.
[30] PONCHON L,DARDEL F.Recombinant RNA technology:The tRNA scaffold[J].Nat Methods,2007,4(7):571-576. |