[1] KNETTER S M, TUGGLE C K, WANNEMUEHLER M J, et al. Organic barn dust extract exposure impairs porcine macrophage function in vitro:implications for respiratory health[J]. Vet Immunol Immunopathol, 2014, 157(1-2):20-30.
[2] MA J H, SONG S H, GUO M, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions[J]. Biochem Biophys Res Commun, 2017, 493(2):1122-1128.
[3] WINKEL A, MOSQUERA J, KOERKAMP P W G G, et al. Emissions of particulate matter from animal houses in the Netherlands[J]. Atmos Environ, 2015, 111:202-212.
[4] XU W, ZHENG K, MENG L M, et al. Concentrations and emissions of particulate matter from intensive pig production at a large farm in North China[J]. Aerosol Air Qual Res, 2016, 16(1):79-90.
[5] MOSTAFA E, HOELSCHER R, DIEKMANN B, et al. Evaluation of two indoor air pollution abatement techniques in forced-ventilation fattening pig barns[J]. Atmos Pollut Res, 2017, 8(3):428-438.
[6] COFALA J, KLIMONT Z, AMANN M. The potential for further control of emissions of fine particulate matter in Europe[R]. Laxenburg, Austria:ⅡASA, 2006.
[7] 刘杨. 育肥猪舍气溶胶产生规律与减排方法研究[D]. 北京:中国农业科学院, 2016.
LIU Y.Study on the aerosols production and mitigation methods in fattening pig barns[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[8] 吴胜,沈丹,唐倩,等. 规模化半封闭式猪场舍内颗粒物、氨气和二氧化碳分布规律[J]. 畜牧与兽医, 2018, 50(3):30-38.
WU S, SHEN D, TANG Q, et al. Distribution of particulate matters and noxious gases in large-scale semi-enclosed swine houses[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(3):30-38. (in Chinese)
[9] LI Q F, WANG-LI L J, LIU Z F, et al. Major ionic compositions of fine particulate matter in an animal feeding operation facility and its vicinity[J]. J Air Waste Manag Assoc, 2014, 64(11):1279-1287.
[10] MOSTAFA E, NANNEN C, HENSELER J, et al. Erratum to:physical properties of particulate matter from animal houses-empirical studies to improve emission modelling[J]. Environ Sci Pollut Res, 2016, 23(12):12264.
[11] ZHANG Y P, MO J H, LI Y G, et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review[J]. Atmos Environ, 2011, 45(26):4329-4343.
[12] 李超,郝海玉,孙玲玉,等. 猪舍环境气载微生物监测[J]. 畜牧兽医学报, 2014, 45(10):1684-1692.
LI C, HAO H Y, SUN L Y, et al. Airborne microbiological of swine houses monitoring[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(10):1684-1692. (in Chinese)
[13] 鞠雷,郭洪梅,朱术会,等. 保育猪舍不同粒径悬浮颗粒物细菌群落组成的初步研究[J]. 畜牧兽医学报, 2017, 48(11):2198-2204.
JU L, GUO H M, ZHU S H, et al. Preliminary study on bacterial community composition of different particle size of suspended particulates in weaning pig house[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(11):2198-2204. (in Chinese)
[14] DONHAM K J. Hazardous agents in agricultural dusts and methods of evaluation[J]. Am J Ind Med, 1986, 10(3):205-220.
[15] AARNINK A J A, ROELOFS P F M M, ELLEN H, et al. Dust sources in animal houses[C]//Proceedings of 1999 Conference of Dust Control in Animal Production Facilities. Horsens, Denmark:Danish Institute of Agricultural Sciences, 1999:34-40.
[16] HONEY L F, MCQUITTY J B. Some physical factors affecting dust concentrations in a pig facility[J]. Can Agric Eng, 1979, 21(1):9-14.
[17] BESSAGNET B, BEAUCHAMP M, GUERREIRO C, et al. Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?[J]. Environ Sci Policy, 2014, 44:149-163.
[18] ROUMELIOTIS T S, VAN HEYST B J. Investigation of secondary particulate matter formation in a layer barn[C]//Proceedings of 2008 Livestock Environment VⅢ. Iguassu Falls, Brazil:American Society of Agricultural and Biological Engineers, 2009:1-17.
[19] WATHES C M, DEMMERS T G M, TEER N, et al. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia[J]. Anim Sci, 2004, 78(1):87-97.
[20] RENAUDEAU D. Effect of housing conditions (clean vs. dirty) on growth performance and feeding behavior in growing pigs in a tropical climate[J]. Trop Anim Health Prod, 2009, 41(4):559-563.
[21] SANDBERG F B, EMMANS G C, KYRIAZAKIS I. The effects of pathogen challenges on the performance of naïve and immune animals:the problem of prediction[J]. Animal, 2007, 1(1):67-86.
[22] BLACK J L, GILES L R, WYNN P C, et al. Factors limiting the performance of growing pigs in commercial environments[C]//Proceedings of the 8th Conference of the Australasian Pig Science Association. Werribee:Australasian Pig Science Association, 2001:25-28.
[23] DONHAM K J. Community and occupational health concerns in pork production:a review[J]. J Anim Sci, 2010, 88(S13):E102-E111.
[24] URBAIN B, MAST J, BEERENS D, et al. Effects of inhalation of dust and endotoxin on respiratory tracts of pigs[J]. Am J Vet Res, 1999, 60(9):1055-1060.
[25] HE M, ICHINOSE T, YOSHIDA S, et al. PM2.5-induced lung inflammation in mice:differences of inflammatory response in macrophages and type Ⅱ alveolar cells[J]. J Appl Toxicol, 2017, 37(10):1203-1218.
[26] CHU X, LIU X J, QIU J M, et al. Effects of Astragalus and Codonopsis pilosula polysaccharides on alveolar macrophage phagocytosis and inflammation in chronic obstructive pulmonary disease mice exposed to PM2.5[J]. Environ Toxicol Pharmacol, 2016, 48:76-84.
[27] GOLD M J, HIEBERT P R, PARK H Y, et al. Mucosal production of uric acid by airway epithelial cells contributes to particulate matter-induced allergic sensitization[J]. Mucosal Immunol, 2016, 9(3):809-820.
[28] KUHN D A, VANHECKE D, MICHEN B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages[J]. Beilstein J Nanotechnol, 2014, 5:1625-1636.
[29] POOLE J A, WYATT T A, OLDENBURG P J, et al. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice[J]. Am Physiol Lung Cell Mol Physiol, 2009, 296(6):L1085-L1095.
[30] POOLE J A, ALEXIS N E, PARKS C, et al. Repetitive organic dust exposure in vitro impairs macrophage differentiation and function[J]. J Allergy Clin Immun, 2008, 122(2):375-382.
e4.
[31] LI B, GUO L, KU T T, et al. PM2.5 exposure stimulates COX-2-mediated excitatory synaptic transmission via ROS-NF-κB pathway[J]. Chemosphere, 2017, 190:124-134.
[32] ZHU L N, ZHAO Q J, YANG T, et al. Cellular metabolism and macrophage functional polarization[J]. Int Rev Immunol, 2015, 34(1):82-100.
[33] 阮静瑶,陈必成,张喜乐,等. 巨噬细胞M1/M2极化的信号通路研究进展[J]. 免疫学杂志, 2015, 31(10):911-917.
RUAN J Y, CHEN B C, ZHANG X L, et al. Progress in signaling pathways of macrophage M1/2 polarization[J].Immunological Journal, 2015, 31(10):911-917. (in Chinese)
[34] FONCECA A M, ZOSKY G R, BOZANICH E M, et al. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung[J]. Respir Res, 2018, 19:15.
[35] VAN EEDEN S F, TAN W C, SUWA T, et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10)[J]. Am J Respir Crit Care Med, 2001, 164(5):826-830.
[36] HIRAIWA K, VAN EEDEN S F. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants[J]. Mediators Inflamm, 2013, 2013:619523.
[37] ZHAO Q J, CHEN H, YANG T, et al. Direct effects of airborne PM2.5 exposure on macrophage polarizations[J]. Biochim Biophys Acta, 2016, 1860(12):2835-2843.
[38] LI R J, ZHAO L F, TONG J L, et al. Fine particulate matter and sulfur dioxide coexposures induce rat lung pathological injury and inflammatory responses via TLR4/p38/NF-κB pathway[J]. Inter J Toxicol, 2017, 36(2):165-173.
[39] HE M, ICHINOSE T, YOSHIDA Y, et al. Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway[J]. Sci Rep, 2017, 7(1):11027.
[40] BECKER S, MUNDANDHARA S, DEVLIN R B, et al. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles:further mechanistic studies[J]. Toxicol Appl Pharmacol, 2005, 207(2):269-275.
[41] HE M, ICHINOSE T, SONG Y, et al. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway[J]. Toxicol Appl Pharmacol, 2016, 296:61-72.
[42] HE M, ICHINOSE T, YOSHIDA S, et al. Urban particulate matter in Beijing, China, enhances allergen-induced murine lung eosinophilia[J]. Inhal Toxicol, 2010, 22(9):709-718.
[43] ALEXIS N E, LAY J C, ZEMAN K, et al. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers[J]. J Allergy Clin Immun, 2006, 117(6):1396-1403.
[44] BECKER S, DAILEY L, SOUKUP J M, et al. TLR-2 is involved in airway epithelial cell response to air pollution particles[J]. Toxicol Appl Pharmacol, 2005, 203(1):45-52.
[45] WILLIAMS M A, PORTER M, HORTON M, et al. Ambient particulate matter directs nonclassic dendritic cell activation and a mixed TH1/TH2-like cytokine response by naive CD4+ T cells[J]. J Allergy Clin Immunol, 2007, 119(2):488-497.
[46] 余杰,毛丽君,赵金垣. 二氧化硅通过肺泡巨噬细胞的识别反应启动肺内炎性损伤的机制[J]. 中国工业医学杂志, 2015, 28(4):265-269.
YU J, MIAO L J, ZHAO J Y. Mechanism of intrapulmonary inflammatory injury initiated by recognition response of alveolar macrophages by silica[J]. Chinese Journal of Industrial Medicine, 2015, 28(4):265-269. (in Chinese)
[47] 杨萌,姚三巧. 胶原样结构巨噬细胞受体和上皮间质转化在矽肺发病机制中作用研究进展[J]. 中国职业医学, 2017, 44(3):371-375.
YANG M, YAO S Q. Study advance in the role of collagen-like macrophage receptors and epithelial-mesenchymal transition in the pathogenesis of silicosis[J].China Occupational Medicine, 2017, 44(3):371-375. (in Chinese)
[48] OBOT C J, MORANDI M T, BEEBE T P Jr, et al. Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors[J]. Toxicol Appl Pharmacol, 2002, 184(2):98-106.
[49] SIJAN Z, ANTKIEWICZ D S, HEO J, et al. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter[J]. Environ Toxicol, 2015, 30(7):836-851.
[50] MICHAEL S, MONTAG M, DOTT W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter[J]. Environ Pollut, 2013, 183:19-29.
[51] 简悦. AMPK-NF-κB在肺部炎症通路的研究进展[J]. 临床肺科杂志, 2016, 21(12):2291-2293, 2310.
JIAN Y. The research progress of AMPK-NF-κB in pulmonary inflammation pathway[J]. Journal of Clinical Pulmonary Medicine, 2016, 21(12):2291-2293, 2310. (in Chinese)
[52] SAKAMOTO N, HAYASHI S, GOSSELINK J, et al. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells[J]. Toxicol Appl Pharmacol, 2007, 225(2):134-141.
[53] XIAO G G, WANG M Y, LI N, et al. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line[J]. J Biol Chem, 2003, 278(50):50781-50790.
[54] MAZZOLI-ROCHA F, FERNANDES S, EINICKER-LAMAS M, et al. Roles of oxidative stress in signaling and inflammation induced by particulate matter[J]. Cell Biol Toxicol, 2010, 26(5):481-498.
[55] WENZEL J, OUDERKIRK J L, KRENDEL M, et al. Class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release, and antigen presentation via MHC class Ⅱ[J]. Eur J Immunol, 2015, 45(1):225-237.
[56] WU C F, LIU C W, LUO K, et al. Changes in Expression of the Membrane receptors CD14, MHC-Ⅱ, SR-A, and TLR4 in tissue-specific monocytes/macrophages following Porphyromonas gingivalis-LPS stimulation[J]. Inflammation, 2018, 41(2):418-431.
[57] BRANDENBERGER C, KLING K M, VITAL M, et al. The role of pulmonary and systemic immunosenescence in acute lung injury[J]. Aging Dis, 2017, 9(3):1-14.
[58] PARK E J, ROH J, KIM Y, et al. PM2.5 collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice[J]. Environ Res, 2011, 111(3):348-355.
[59] YOSHIZAKI K, BRITO J M, TOLEDO A C, et al. Subchronic effects of nasally instilled diesel exhaust particulates on the nasal and airway epithelia in mice[J]. Inhal Toxicol, 2010, 22(7):610-617.
[60] POURAZAR J, FREW A J, BLOMBERG A, et al. Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects[J]. Respir Med, 2004, 98(9):821-825.
[61] PETERSON J D, HERZENBERG L A, VASQUEZ K, et al. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns[J]. Proc Natl Acad Sci U S A, 1998, 95(6):3071-3076.
[62] TONIATO E, FRYDAS I S, ROBUFFO I, et al. Activation and inhibition of adaptive immune response mediated by mast cells[J]. J Biol Regul Homeost Agents, 2017, 31(3):543-548.
[63] MIYATA R, VAN EEDEN S F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter[J]. Toxicol Appl Pharmacol, 2011, 257(2):209-226. |